Article 5113

Title of the article

DIAMETERS OF SOBOLEV CLASS FUNCTIONS WITH BOUNDARY PECULIARITIES 

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (Penza, 40 Krasnaya str.), math@pnzgu.ru
Tynda Aleksandr Nikolaevich, Candidat of physical and mathematical sciences, associate professor, sub-department of higher and applied mathematics, Penza State University (Penza, 40 Krasnaya str.), math@pnzgu.ru 

Index UDK

518.5 

Abstract

The article estimates the diameters of Kolmogorov and Babenko class functions which have the solutions of Volterra integral functions with singular kernels. A distinctive feature of these classes is an unlimited growth of function derivative modules when approaching a definitial domain boundary. For these function classes the authors have built local splines being optimal order algorithms of approximation. 

Key words

Sobolev space, optimal algorithms, Babenko and Kolmogorov diameters, local splines. 

Download PDF
References

1. Babenko, K. I. O nekotorykh zadachakh teorii priblizheniy i chislennogo analiza / K. I. Babenko // Uspekhi matematicheskikh nauk. –1985. –T. 40, № 1. – S. 3–28.
2. Teoreticheskiye osnovy i konstruirovaniye chislennykh algoritmov zadach matematicheskoy fiziki / pod red. K.I. Babenko. – M. : Nauka, 1979. –196 s.
3. Boykov, I. V. Priblizhennyye metody resheniya singulyarnykh integral'nykh uravneniy / I. V. Boykov. – Penza : Izd-vo PGU, 2004. – 316 s.
4. Boykov, I. V. Approksimatsiya nekotorykh klassov funktsiy lokal'nymi splaynami / I. V. Boykov // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. – 1998. – T. 38, № 1. – S. 25–33.
5. Boykov, I. V. Optimal'nyye metody priblizheniya funktsiy i vychisleniya integralov / I. V. Boykov. – Penza : Izd-vo PGU, 2007. – 236 s.
6. Boykov, I. V. Priblizhennyye metody resheniya pryamykh i obratnykh zadach gravirazvedki / I. V. Boykov, A.I.Boykova. – Penza : Izd-vo PGU, 2012. – 450 s.
7. Boykov, I. V. Optimal'nyye algoritmy vosstanovleniya funktsiy i vychisleniya integralov na odnom klasse beskonechno differentsiruyemykh funktsiy/I.V.Boykov// Izvestiya vuzov.Matematika.– 1998.– № 9.– S.14–20.
8. Boykov, I. V. Priblizhennyye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Chast' 1. Singulyarnyye integraly / I. V. Boykov. – Penza : Izd-vo PGU, 2005. – 360 s.
9. Boykov, I. V. Priblizhennyye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Chast' 2. Gipersingulyarnyye integraly / I. V. Boy-kov. – Penza : Izd-vo PGU, 2009. – 252 s.
10. Boykov, I. V. Optimal'nyye po tochnosti priblizhennyye metody resheniya integral'nykh uravneniy Vol'tera / I. V. Boykov, A. N. Tynda // Differentsial'nyye uravneniya. – 2002. – № 9. – C. 1215–1232.
11. Boykov, I. V. Sverkhskhodimost' priblizhennogo resheniya mnogomernykh integral'nykh uravneniy Vol'terra / I. V. Boykov, A. N. Tynda // Trudy Srednevolzhskogo matematicheskogo obshchestva. – 2003. – T. 5, № 1. – S. 119–126.
12. Boykov, I. V. Sverkhskhodimost' resheniy mnogomernykh integral'nykh uravneniy Fredgol'ma / I. V. Boykov // Differentsial'nyye uravneniya. – 2004. – T. 40, № 9. – S. 1214–1223.
13. Nikol'skiy, S. M. Kurs matematicheskogo analiza / S. M. Nikol'skiy. – M. : Nauka, 1975. – T. 1. – 432 s.

 

Дата создания: 20.01.2014 10:59
Дата обновления: 21.07.2014 08:20